Research Progress on the Directed Enzymatic Preparation and Structure-Function Relationship of Alginate Oligosaccharides (2025)

Table of Contents
Abstract References

Yongyan CUI1,2Research Progress on the Directed Enzymatic Preparation and Structure-Function Relationship of Alginate Oligosaccharides (1),Min YANG1,3Research Progress on the Directed Enzymatic Preparation and Structure-Function Relationship of Alginate Oligosaccharides (2)( Research Progress on the Directed Enzymatic Preparation and Structure-Function Relationship of Alginate Oligosaccharides (3) ),Nan LIU1,Shanshan WANG1,Yong SUN1,Guohui SUN1,Deqing ZHOU1

Abstract

Alginate oligosaccharides (AOS) are low molecular mass linear polymers containing 2–10 monosaccharides obtained by the degradation of alginate. They have various bioactivities including anti-inflammatory, antibacterial, antioxidant, antitumor, and immunomodulation. Thus, AOS have a wide range of applications in the fields of medicine, food, feed and agriculture. The bioactivity of AOS is closely related to its structure, including mode of degradation, degree of polymerization, ratio of mannuronic acid to guluronic acid, non-reducing end structure, and modification. Directed enzymatic degradation of alginate produces functional AOS with specific monomer composition and polymerization degree. Furthermore, the sources, properties and reaction conditions of enzymes affect the product distribution. In this article, the enzymatic preparation of functional AOS and its influential factors are systematically reviewed, and the structure-function relationship of functional AOS is discussed. It is expected that this review will provide a theoretical reference for the directed preparation and application of AOS.

References

[1]

MURILLO-ÁLVAREZ J I, HERNÁNDEZ-CARMONA G. Monomer composition and sequence of sodium alginate extracted at pilot plant scale from three commercially important seaweeds from Mexico[J]. Journal of Applied Phycology, 2007, 19(5): 545-548. DOI:10.1007/s10811-007-9168-5.

[3]

FENORADOSOA T A, ALI G, DELATTRE C, et al. Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides Grunow[J]. Journal of Applied Phycology, 2009, 22(2): 131-137. DOI:10.1007/s10811-009-9432-y.

[4]

GOH C H, HENG P W S, CHAN L W. Alginates as a useful natural polymer for microencapsulation and therapeutic applications[J]. Carbohydrate Polymers, 2012, 88(1): 1-12. DOI:10.1016/j.carbpol.2011.11.012.

[5]

ZHANG C H, LI M X, RAUF A, et al. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives[J]. Critical Reviews in Food Science and Nutrition, 2021, 63(3): 303-329. DOI:10.1080/10408398.2021.1946008.

[6]

LU S, NA K, WEI J N, et al. Alginate oligosaccharides: the structure-function relationships and the directional preparation for application[J]. Carbohydrate Polymers, 2022, 284: 119225. DOI:10.1016/j.carbpol.2022.119225.

[7]

WANG M P, CHEN L, ZHANG Z J. Potential applications of alginate oligosaccharides for biomedicine: a mini review[J]. Carbohydrate Polymers, 2021, 271: 118408. DOI:10.1016/j.carbpol.2021.118408.

[8]

ZHAO Y, ZHANG P F, GE W, et al. Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermatogenesis[J]. Theranostics, 2020, 10(7): 3308-3324. DOI:10.7150/thno.43189.

[9]

YANG Y, MA Z H, YANG G K, et al. Alginate oligosaccharide indirectly affects Toll-like receptor signaling via the inhibition of microRNA-29b in aneurysm patients after endovascular aortic repair[J]. Drug Design Development and Therapy, 2017, 11: 2565-2579. DOI:10.2147/dddt.s140206.

[10]

WANG X Y, SUN G Q, FENG T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression[J]. Cell Research, 2019, 29(10): 787-803. DOI:10.1038/s41422-019-0216-x.

[11]

ZHU W H, LI D F, WU H, et al. Effects of purified polymannuronate on the performance, immune status, antioxidant capacity, intestinal microbial populations and volatile fatty acid concentrations of weaned piglets[J]. Animal Feed Science and Technology, 2016, 216: 161-168. DOI:10.1016/j.anifeedsci.2015.05.015.

[12]

WAN J, ZHANG J, CHEN D W, et al. Effects of alginate oligosaccharide on the growth performance, antioxidant capacity and intestinal digestion-absorption function in weaned pigs[J]. Animal Feed Science and Technology, 2017, 234: 118-127. DOI:10.1016/j.anifeedsci.2017.09.006.

[13]

WAN J, ZHANG J, CHEN D W, et al. Alginate oligosaccharide-induced intestinal morphology, barrier function and epithelium apoptosis modifications have beneficial effects on the growth performance of weaned pigs[J]. Journal of Animal Science and Biotechnology, 2018, 9(1): 58. DOI:10.1186/s40104-018-0273-x.

[14]

WAN J, ZHANG J, CHEN D W, et al. Alterations in intestinal microbiota by alginate oligosaccharide improve intestinal barrier integrity in weaned pigs[J]. Journal of Functional Foods, 2020, 71: 104040. DOI:10.1016/j.jff.2020.104040.

[15]

ZHANG C G, WANG W X, ZHAO X M, et al. Preparation of alginate oligosaccharides and their biological activities in plants: a review[J]. Carbohydrate Research, 2021, 20(1): 24-34. DOI:10.1016/S2095-3119(20)63195-1.

[16]

WONG T Y, PRESTON L A, SCHILLER N L. Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications[J]. Annual Review of Microbiology, 2000, 54(1): 289-340. DOI:10.1146/annurev.micro.54.1.289.

[17]

YANG J, CUI D D, MA S, et al. Characterization of a novel PL 17 family alginate lyase with exolytic and endolytic cleavage activity from marine bacterium Microbulbifer sp. SH-1[J]. International Journal of Biological Macromolecules, 2021, 169: 551-563. DOI:10.1016/j.ijbiomac.2020.12.196.

[18]

CI F F, JIANG H, ZHANG Z H, et al. Properties and potential applications of mannuronan C5-epimerase: a biotechnological tool for modifying alginate[J]. International Journal of Biological Macromolecules, 2020, 168: 663-675. DOI:10.1016/j.ijbiomac.2020.11.123.

[19]

ZHU B W, YIN H. Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications[J]. Bioengineered, 2015, 6(3): 125-131. DOI:10.1080/21655979.2015.1030543.

[20]

ZHANG K K, LI Z J, ZHU Q Y, et al. Determination of oligosaccharide product distributions of PL7 alginate lyases by their structural elements[J]. Communications Biology, 2022, 5(1): 782. DOI:10.1038/s42003-022-03721-1.

[21]

VASUDEVAN U M, LEE O K, LEE E Y. Alginate derived functional oligosaccharides: recent developments, barriers, and future outlooks[J]. Carbohydrate Polymers, 2021, 267: 118158. DOI:10.1016/j.carbpol.2021.118158.

[22]

SUN H H, GAO L, XUE C H, et al. Marine-polysaccharide degrading enzymes status and prospects[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(6): 2767-2796. DOI:10.1111/1541-4337.12630.

[23]

HUANG G Y, WEN S H, LIAO S M, et al. Characterization of a bifunctional alginate lyase as a new member of the polysaccharide lyase family 17 from a marine strain BP-2[J]. Biotechnology Letters, 2019, 41(10): 1187-1200. DOI:10.1007/s10529-019-02722-1.

[24]

LI Q, ZHENG L, GUO Z L, et al. Alginate degrading enzymes: an updated comprehensive review of the structure, catalytic mechanism, modification method and applications of alginate lyases[J]. Critical Reviews in Biotechnology, 2021, 41(6): 953-968. DOI:10.1080/07388551.2021.1898330.

[26]

CAO S S, LI L, ZHU B W, et al. Alginate modifying enzymes: an updated comprehensive review of the mannuronan C5-epimerases[J]. Algal Research-Biomass Biofuels and Bioproducts, 2023, 69: 102952. DOI:10.1016/j.algal.2022.102952.

[27]

WOLFRAM F, KITOVA E N, ROBINSON H, et al. Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG[J]. Journal of Biological Chemistry, 2014, 289(9): 6006-6019. DOI:10.1074/jbc.m113.533158.

[28]

INOUE A, SATOH A, MORISHITA M, et al. Functional heterologous expression and characterization of mannuronan C5-epimerase from the brown alga Saccharina japonica[J]. Algal Research, 2016, 16: 282-291. DOI:10.1016/j.algal.2016.03.030.

[30]

GAWIN A, TIETZE L, AARSTAD O A, et al. Functional characterization of three Azotobacter chroococcum alginate-modifying enzymes related to the Azotobacter vinelandii AlgE mannuronan C-5-epimerase family[J]. Scientific Reports, 2020, 10(1): 12470. DOI:10.1038/s41598-020-68789-3.

[31]

SUN M, SUN C, LI T, et al. Characterization of a novel bifunctional mannuronan C-5 epimerase and alginate lyase from Pseudomonas mendocina. sp. DICP-70[J]. International Journal of Biological Macromolecules, 2020, 150: 662-670. DOI:10.1016/j.ijbiomac.2020.02.126.

[32]

SIL’CHENKO A S, KUSAIKIN M I, ZAKHARENKO A M, et al. Isolation from the marine mollusk Lambis sp. and catalytic properties of an alginate lyase with rare substrate specificity[J]. Chemistry of Natural Compounds, 2013, 49(2): 215-218. DOI:10.1007/s10600-013-0564-6.

[33]

WANG Y, GUO E W, YU W G, et al. Purification and characterization of a new alginate lyase from a marine bacterium Vibrio sp.[J]. Biotechnology Letters, 2013, 35(5): 703-708. DOI:10.1007/s10529-012-1134-x.

[34]

ZHU B W, HU F, YUAN H, et al. Biochemical characterization and degradation pattern of a unique pH-stable polyM-specific alginate lyase from newly isolated Serratia marcescens NJ-07[J]. Marine Drugs, 2018, 16(4): 129. DOI:10.3390/md16040129.

[35]

BELIK A, SILCHENKO A, MALYARENKO O, et al. Two new alginate lyases of PL7 and PL6 families from polysaccharide-degrading bacterium Formosa algae KMM 3553T: structure, properties, and products analysis[J]. Marine Drugs, 2020, 18(2): 130. DOI:10.3390/md18020130.

[36]

WANG Y N, CHEN X H, BI X L, et al. Characterization of an alkaline alginate lyase with pH-stable and thermo-tolerance property[J]. Marine Drugs, 2019, 17(5): 308. DOI:10.3390/md17050308.

[37]

YANG M, YUAN Y, YANG S, et al. Expression and characterization of a new polyG-specific alginate lyase from marine bacterium Microbulbifer sp. Q7[J]. Frontiers in Microbiology, 2018, 9: 2894. DOI:10.3389/fmicb.2018.02894.

[38]

ZHU B W, LI K K, WANG W X, et al. Preparation of trisaccharides from alginate by a novel alginate lyase Alg7A from marine bacterium Vibrio sp. W13[J]. International Journal of Biological Macromolecules, 2019, 139: 879-885. DOI:10.1016/j.ijbiomac.2019.08.020.

[39]

LI Q, HU F, WANG M Y, et al. Elucidation of degradation pattern and immobilization of a novel alginate lyase for preparation of alginate oligosaccharides[J]. International Journal of Biological Macromolecules, 2020, 146: 579-587. DOI:10.1016/j.ijbiomac.2019.12.238.

[40]

BJERKAN T M, BENDER C L, ERTESVAG H, et al. The Pseudomonas syringae genome encodes a combined mannuronan C-5-epimerase and O-acetylhydrolase, which strongly enhances the predicted gel-forming properties of alginates[J]. Journal of Biological Chemistry, 2004, 279(28): 28920-28929. DOI:10.1074/jbc.m313293200.

[41]

XIAO Z B, SUN M, LI T, et al. Mannuronan C-5 epimerases: review of activity assays, enzyme characteristics, structure, and mechanism[J]. Catalysts, 2022, 13(1): 28. DOI:10.3390/catal13010028.

[42]

YANG J, CUI D D, CHEN D W, et al. Purification and characterization of a novel endolytic alginate lyase from Microbulbifer sp. SH-1 and its agricultural application[J]. Marine Drugs, 2020, 18(4): 184. DOI:10.3390/md18040184.

[43]

XU F, CHEN X L, SUN X H, et al. Structural and molecular basis for the substrate positioning mechanism of a new PL7 subfamily alginate lyase from the arctic[J]. Journal of Biological Chemistry, 2020, 295(48): 16380-16392. DOI:10.1074/jbc.ra120.015106.

[44]

CHEN P, ZHU Y M, MEN Y, et al. Purification and characterization of a novel alginate lyase from the marine bacterium Bacillus sp. Alg07[J]. Marine Drugs, 2018, 16(3): 86. DOI:10.3390/md16030086.

[45]

ZHUANG J J, ZHANG K K, LIU X H, et al. Characterization of a novel polyM-preferred alginate lyase from marine Vibrio splendidus OU02[J]. Marine Drugs, 2018, 16(9): 295. DOI:10.3390/md16090295.

[46]

ZHANG X, LI W, PAN L X, et al. Improving the thermostability of alginate lyase FlAlyA with high expression by computer-aided rational design for industrial preparation of alginate oligosaccharides[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1011273. DOI:10.3389/fbioe.2022.1011273.

[47]

JIANG Z D, GUO Y X, WANG X X, et al. Molecular cloning and characterization of AlgL17, a new exo-oligoalginate lyase from Microbulbifer sp. ALW1[J]. Protein Expression and Purification, 2019, 161: 17-27. DOI:10.1016/j.pep.2019.03.015.

[50]

LYU Q Q, ZHANG K K, SHI Y H, et al. Structural insights into a novel Ca2+-independent PL-6 alginate lyase from Vibrio OU02 identify the possible subsites responsible for product distribution[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2019, 1863(7): 1167-1176. DOI:10.1016/j.bbagen.2019.04.013.

[51]

ZHANG Y H, SHAO Y, JIAO C, et al. Characterization and application of an alginate lyase, Aly1281 from marine bacterium Pseudoalteromonas carrageenovora ASY5[J]. Marine Drugs, 2020, 18(2): 95. DOI:10.3390/md18020095.

[52]

PENG C, WANG Q B, LU D R, et al. A novel bifunctional endolytic alginate lyase with variable alginate-degrading modes and versatile monosaccharide-producing properties[J]. Frontiers in Microbiology, 2018, 9: 167. DOI:10.3389/fmicb.2018.00167.

[53]

YANG H L, SUN Y Z, HU X, et al. Bacillus pumilus SE5 originated PG and LTA tuned the intestinal TLRs/MyD88 signaling and microbiota in grouper (Epinephelus coioides)[J]. Fish & Shellfish Immunology, 2019, 88: 266-271. DOI:10.1016/j.fsi.2019.03.005.

[54]

WANG Z P, CAO M, LI B, et al. Cloning, secretory expression and characterization of a unique pH-stable and cold-adapted alginate lyase[J]. Marine Drugs, 2020, 18(4): 189. DOI:10.3390/md18040189.

[56]

ZHU B W, NI F, SUN Y, et al. Elucidation of degrading pattern and substrate recognition of a novel bifunctional alginate lyase from Flammeovirga sp. NJ-04 and its use for preparation alginate oligosaccharides[J]. Biotechnology for Biofuels, 2019, 12(1): 13. DOI:10.1186/s13068-019-1352-8.

[57]

LIU J, YANG S Q, LI X T, et al. Alginate oligosaccharides: production, biological activities, and potential applications[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(6): 1859-1881. DOI:10.1111/1541-4337.12494.

[58]

GUO J J, MA L L, SHI H T, et al. Alginate oligosaccharide prevents acute doxorubicin cardiotoxicity by suppressing oxidative stress and endoplasmic reticulum-mediated apoptosis[J]. Marine Drugs, 2016, 14(12): 231. DOI:10.3390/md14120231.

[59]

LI L Y, JIANG X L, GUAN H S, et al. Preparation, purification and characterization of alginate oligosaccharides degraded by alginate lyase from Pseudomonas sp. HZJ 216[J]. Carbohydrate Research, 2011, 346(6): 794-800. DOI:10.1016/j.carres.2011.01.023.

[60]

GAARDLØS M, HEGGESET T M B, TØNDERVIK A, et al. Mechanistic basis for understanding the dual activities of the bifunctional Azotobacter vinelandii mannuronan C-5 epimerase and alginate lyase AlgE7[J]. Applied and Environmental Microbiology, 2021, 88(3): e0183621. DOI:10.1128/aem.01836-21.

[62]

LI S Y, YANG X M, BAO M M, et al. Family 13 carbohydrate-binding module of alginate lyase from Agarivorans sp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution[J]. FEMS Microbiology Letters, 2015, 362(10): fnv054. DOI:10.1093/femsle/fnv054.

[63]

YAN J J, CHEN P, ZENG Y, et al. The characterization and modification of a novel bifunctional and robust alginate lyase derived from Marinimicrobium sp. H1[J]. Marine Drugs, 2019, 17(10): 545. DOI:10.3390/md17100545.

[64]

YANG M, LI N N, YANG S X, et al. Study on expression and action mode of recombinant alginate lyases based on conserved domains reconstruction[J]. Applied Microbiology and Biotechnology, 2018, 103(2): 807-817. DOI:10.1007/s00253-018-9502-7.

[65]

CHENG D Y, JIANG C C, XU J C, et al. Characteristics and applications of alginate lyases: a review[J]. International Journal of Biological Macromolecules, 2020, 164: 1304-1320. DOI:10.1016/j.ijbiomac.2020.07.199.

[66]

TANG L Y, WANG Y, GAO S, et al. Biochemical characteristics and molecular mechanism of an exo-type alginate lyase VxAly7D and its use for the preparation of unsaturated monosaccharides[J]. Biotechnology for Biofuels, 2020, 13(1): 99. DOI:10.1186/s13068-020-01738-4.

[67]

ZHANG K K, YANG Y, WANG W D, et al. Substrate-binding mode and intermediate-product distribution coguided protein design of alginate lyase AlyF for altered end-product distribution[J]. Journal of Agricultural and Food Chemistry, 2021, 69(25): 7190-7198. DOI:10.1021/acs.jafc.2c02335.

[68]

STANISCI A, TNDERVIK A, GAARDLS M, et al. Identification of a pivotal residue for determining the block structure-forming properties of alginate C-5 epimerases[J]. ACS Omega, 2020, 5(8): 4352-4361. DOI:10.1021/acsomega.9b04490.

[69]

TØNDERVIK A, KLINKENBERG G, AACHMANN F L, et al. Mannuronan C-5 epimerases suited for tailoring of specific alginate structures obtained by high-throughput screening of an epimerase mutant library[J]. Biomacromolecules, 2013, 14(8): 2657-2666. DOI:10.1021/bm4005194.

[72]

CHEN J Y, HU Y, ZHANG L R, et al. Alginate oligosaccharide DP5 exhibits antitumor effects in osteosarcoma patients following surgery[J]. Frontiers in Pharmacology, 2017, 8: 623. DOI:10.3389/fphar.2017.00623.

[73]

IWAMOTO M, KURACHI M, NAKASHIMA T, et al. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells[J]. FEBS Letters, 2005, 579(20): 4423-4429. DOI:10.1016/j.febslet.2005.07.007.

[75]

XU X, WU X T, WANG Q Q, et al. Immunomodulatory effects of alginate oligosaccharides on murine macrophage RAW264.7 cells and their structure-activity relationships[J]. Journal of Agricultural and Food Chemistry, 2014, 62(14): 3168-3176. DOI:10.1021/jf405633n.

[76]

COSTA M J, MARQUES A M, PASTRANA L M, et al. Physicochemical properties of alginate-based films: effect of ionic crosslinking and mannuronic and guluronic acid ratio[J]. Food Hydrocolloids, 2018, 81: 442-448. DOI:10.1016/j.foodhyd.2018.03.014.

[78]

KURACHI M, NAKASHIMA T, MIYAJIMA C, et al. Comparison of the activities of various alginates to induce TNF-α secretion in RAW264.7 cells[J]. Journal of Infection and Chemotherapy, 2005, 11(4): 199-203. DOI:10.1007/s10156-005-0392-0.

[79]

ŞEN M. Effects of molecular weight and ratio of guluronic acid to mannuronic acid on the antioxidant properties of sodium alginate fractions prepared by radiation-induced degradation[J]. Applied Radiation and Isotopes, 2011, 69(1): 126-129. DOI:10.1016/j.apradiso.2010.08.017.

[80]

SUZUKI S, CHRISTENSEN B E, KITAMURA S. Effect of mannuronate content and molecular weight of alginates on intestinal immunological activity through Peyer’s patch cells of C3H/HeJ mice[J]. Carbohydrate Polymers, 2011, 83(2): 629-634. DOI:10.1016/j.carbpol.2010.08.032.

[81]

YAMAMOTO Y, KURACHI M, YAMAGUCHI K, et al. Induction of multiple cytokine secretion from RAW264.7 cells by alginate oligosaccharides[J]. Bioscience Biotechnology and Biochemistry, 2007, 71(1): 238-241. DOI:10.1271/bbb.60416.

[82]

FALKEBORG M, CHEONG L Z, GIANFICO C, et al. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation[J]. Food Chemistry, 2014, 164: 185-194. DOI:10.1016/j.foodchem.2014.05.053.

[83]

LI S Y, HE N N, WANG L N. Efficiently anti-obesity effects of unsaturated alginate oligosaccharides (UAOS) in high-fat diet (HFD)-fed mice[J]. Marine Drugs, 2019, 17(9): 540. DOI:10.3390/md17090540.

[84]

LI S Y, WANG L N, LIU B, et al. Unsaturated alginate oligosaccharides attenuated obesity-related metabolic abnormalities by modulating gut microbiota in high-fat-diet mice[J]. Food & Function, 2020, 11(5): 4773-4784. DOI:10.1039/c9fo02857a.

[85]

HE N N, YANG Y, WANG H Y, et al. Unsaturated alginate oligosaccharides (UAOS) protects against dextran sulfate sodium-induced colitis associated with regulation of gut microbiota[J]. Journal of Functional Foods, 2021, 83: 104536. DOI:10.1016/j.jff.2021.104536.

[86]

LIU S Y, LIU G Y, YI Y T. Novel vanadyl complexes of alginate saccharides: synthesis, characterization, and biological activities[J]. Carbohydrate Polymers, 2015, 121: 86-91. DOI:10.1016/j.carbpol.2014.11.069.

[87]

ZHOU L, YI Y T, YUAN Q, et al. VAOS, a novel vanadyl complexes of alginate saccharides, inducing apoptosis via activation of AKT-dependent ROS production in NSCLC[J]. Free Radical Biology and Medicine, 2018, 129: 177-185. DOI:10.1016/j.freeradbiomed.2018.09.016.

[89]

HAO C, HAO J J, WANG W, et al. Insulin sensitizing effects of oligomannuronate-chromium (Ⅲ) complexes in C2C12 skeletal muscle cells[J]. PLoS ONE, 2011, 6(9): e24598. DOI:10.1371/journal.pone.0024598.

[90]

HAO J J, HAO C, ZHANG L J, et al. OM2, a novel oligomannuronate-chromium(Ⅲ) complex, promotes mitochondrial biogenesis and lipid metabolism in 3T3-L1 adipocytes via the AMPK-PGC1α pathway[J]. PLoS ONE, 2015, 10(7): e0131930. DOI:10.1371/journal.pone.0131930.

[91]

PAN Z, WEI X J, LI S J, et al. Sulfated alginate oligosaccharide exerts antitumor activity and autophagy induction by inactivating MEK1/ERK/mTOR signaling in a KSR1-dependent manner in osteosarcoma[J]. Oncogenesis, 2022, 11(1): 16. DOI:10.1038/s41389-022-00390-x.

[92]

BI D C, LAI Q X, CAI N, et al. Elucidation of the molecular-mechanisms and in vivo evaluation of the anti-inflammatory effect of alginate-derived seleno-polymannuronate[J]. Journal of Agricultural and Food Chemistry, 2018, 66(9): 2083-2091. DOI:10.1021/acs.jafc.7b05719.

[93]

BI D C, YAO L J, LIN Z J, et al. Unsaturated mannuronate oligosaccharide ameliorates β-amyloid pathology through autophagy in Alzheimer’s disease cell models[J]. Carbohydrate Polymers, 2021, 251: 117124. DOI:10.1016/j.carbpol.2020.117124.

[94]

XUE Y T, LI S, LIU W J, et al. The mechanisms of sulfated polysaccharide drug of propylene glycol alginate sodium sulfate (PSS) on bleeding side effect[J]. Carbohydrate Polymers, 2018, 194: 365-374. DOI:10.1016/j.carbpol.2018.04.048.

[95]

LIANG H Y, LIU Q, XIU Y H. Effects of marine drug propylene glycol alginate sodium sulfate on glucose and lipid metabolism in mice[J]. Materiale Plastice, 2021, 58(2): 150-154. DOI:10.37358/mp.21.2.5486.

[96]

BI D C, XIAO S F, LIN Z J, et al. Alginate-derived mannuronate oligosaccharide attenuates tauopathy through enhancing autophagy[J]. Journal of Agricultural and Food Chemistry, 2021, 69(15): 4438-4445. DOI:10.1021/acs.jafc.1c00394.

[97]

DONG X L, WANG X, LIU F, et al. Polymannuronic acid prevents dopaminergic neuronal loss via brain-gut-microbiota axis in Parkinson’s disease model[J]. International Journal of Biological Macromolecules, 2020, 164: 994-1005. DOI:10.1016/j.ijbiomac.2020.07.180.

[98]

LIU H Y, GENG M Y, XIN X L, et al. Multiple and multivalent interactions of novel anti-AIDS drug candidates, sulfated polymannuronate (SPMG)-derived oligosaccharides, with gp120 and their anti-HIV activities[J]. Glycobiology, 2004, 15(5): 501-510. DOI:10.1093/glycob/cwi031.

[99]

FANG W S, BI D S, ZHENG R J, et al. Identification and activation of TLR4-mediated signalling pathways by alginate-derived guluronate oligosaccharide in RAW264.7 macrophages[J]. Scientific Reports, 2017, 7(1): 1663. DOI:10.1038/s41598-017-01868-0.

[100]

WEI B Q, REN P F, XUE C H, et al. Guluronate oligosaccharides exerts beneficial effects on hyperuricemia and regulation of gut microbiota in mice[J]. Food Bioscience, 2023, 54: 102855. DOI:10.1016/j.fbio.2023.102855.

[101]

POWELL L C, PRITCHARD M F, EMANUEL C, et al. A nanoscale characterization of the interaction of a novel alginate oligomer with the cell surface and motility of Pseudomonas aeruginosa[J]. American Journal of Respiratory Cell and Molecular Biology, 2014, 50(3): 483-492. DOI:10.1165/rcmb.2013-0287OC.

[102]

XIN M, SUN Y, CHEN H J, et al. Propylene glycol guluronate sulfate (PGGS) reduces lipid accumulation via AMP-activated kinase activation in palmitate-induced HepG2 cells[J]. International Journal of Biological Macromolecules, 2018, 114: 26-34. DOI:10.1016/j.ijbiomac.2018.03.068.

[103]

WAN J, ZHANG J, YIN H, et al. Ameliorative effects of alginate oligosaccharide on tumour necrosis factor-α-induced intestinal epithelial cell injury[J]. International Immunopharmacology, 2020, 89: 107084. DOI:10.1016/j.intimp.2020.107084.

[104]

WU A X, GAO Y, KAN R T, et al. Alginate oligosaccharides prevent dextran-sulfate-sodium-induced ulcerative colitis via enhancing intestinal barrier function and modulating gut microbiota[J]. Foods, 2023, 12(1): 220. DOI:10.3390/foods12010220.

Research Progress on the Directed Enzymatic Preparation and Structure-Function Relationship of Alginate Oligosaccharides (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Corie Satterfield

Last Updated:

Views: 6319

Rating: 4.1 / 5 (42 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Corie Satterfield

Birthday: 1992-08-19

Address: 850 Benjamin Bridge, Dickinsonchester, CO 68572-0542

Phone: +26813599986666

Job: Sales Manager

Hobby: Table tennis, Soapmaking, Flower arranging, amateur radio, Rock climbing, scrapbook, Horseback riding

Introduction: My name is Corie Satterfield, I am a fancy, perfect, spotless, quaint, fantastic, funny, lucky person who loves writing and wants to share my knowledge and understanding with you.